
CS 4530: Fundamentals of Software Engineering

Module 12.1: Testing Effectful Code

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Explain why you might need a test double in your testing
• Use simple mocks and spies in your tests.

2

Remember:
Assemble/Act/Assess

3

test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1])
});

Assemble (and check that
you’ve assembled it
correctly)
Act (do the action that
you are trying to test)

Assess: check to see that
the response is correct

If the response is an answer, testing
is (more or less) straightforward
// System Under Test

/** given a temperature in Farenheit, returns the corresponding temperature in
* Celsius

*/
function f2c(temperature:number): number {

return (5/9*(temperature-32));
}

// Tests

describe ("tests for f2c", () => {
test("32 F => 0 C", () => {

expect(f2c(32)).toBe(0)
})
test("212 F => 100 C", () => {

expect(f2c(212)).toBe(100)
})

})

f2c.test.ts

If you can look at the state of the object, it’s
still easy (1)
interface IPullingClock {

reset():void /** sets the time to 0 */
tick():void /** increments the time */
getTime():number /** returns the current time */

}

class Clock1 implements IPullingClock { }

const c = new Clock1

clock1.test.ts

If you can look at the state of the object, it’s
still easy (2)

describe("tests of Clock1", () => {
test("after reset, clock should return 0",
() => {

c.reset();expect(c.getTime()).toBe(0)
})

test("after one tick, getTime should return 1", () => {
c.reset(); c.tick()
expect(c.getTime()).toBe(1)

})

test("after two ticks, getTime should return 2", () => {
c.reset(); c.tick();c.tick()
expect(c.getTime()).toBe(2)

})
})

clock1.test.ts

But what if you can’t look at its state?
• The action must have some visible effect on some

other part of the system
• Look at the other part of the system
• Hopefully you can get access to the other part of

the system.

If your code uses the observer pattern, you
could supply your own observer
export interface IClockWithListeners {

reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time
addListener(listener:IClockListener):void

}

export interface IClockListener {
// @param t - the current time, as reported by the clock
notify(t:number):void

}

export class ProducerClock implements IClockWithListeners {
// some implementation

}

clockWithObserverPattern.test.ts

Here is an observer you could use for
testing.
import { IClockWithListeners, IClockListener } from "./clockWithObserverPattern";

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

clockWithObserverPattern.test.ts

Now we can test using the custom observer
import { ProducerClock } from "./clockWithObserverPattern";

const clock1 = new ProducerClock
const listener1 = new ClockListenerforTest(clock1)

describe("tests for ProducerClock", () => {
test("after reset, listener should return 0", () => {

clock1.reset()
expect(listener1.getTime()).toBe(0)

})
test("after one tick, listener should return 1", () => {

clock1.reset(); clock1.tick()
expect(listener1.getTime()).toBe(1)

})
test("after two ticks, listener should return 2", () => {

clock1.reset(); clock1.tick(); clock1.tick()
expect(listener1.getTime()).toBe(2)

})
})

clockWithObserverPattern.test.ts

But what if you can’t do that?
• Existing code may have effects on other portions of

the system, which you don’t control.

Mo

Your module may interact with
uncontrollable things in the environment

12

Network
Resources

Database

The SUT

Human User

Mo

Test doubles replace uncontrollable
things with things that you do control

13

Network
Resources

Database

The SUT

Human User

Test Doubles Intercept Calls to Methods
• Testing frameworks provide two common abstractions for doubles

• The framework transparently modifies programs while running to
intercept calls

• Spies invoke the original method, but record the parameters and call
information

• Mocks do not invoke the original method
• Default is to provide canned responses (Jest picks: undefined)
• Also can provide a mock implementation to entirely replace the

original method
• Other frameworks use terms like "fake" and "stub" for variants of these;

we focus on Jest’s features (spies, mocks)

14

A spy is a test double that monitors a real
object call
• It remembers how the method was called, and

what was returned;
• For example: a particular method was called

1. First with parameters "foo" and 42, and it returned 63
2. Then with parameters "quux" and -88, and it returned "hark!"

• A spy can be useful in conjunction with the "real"
environment:
• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?

15

Spy
"remembers"

A mock is like a spy, but does not actually
do the call
• It remembers how the method was called, and

what was returned;
• For example: a particular method was called

1. First with parameters "foo" and 42, and it returned 63
2. Then with parameters "quux" and -88, and it returned "hark!"

• You can set up the mock to return what you want
• Jest default is to return undefined

16

Simplest mock behavior in Jest
test("simplest mock behavior", () => {

const mockFunction1 = jest.fn();

const result1 = mockFunction1("17");
const result2 = mockFunction1("42")

expect(result1).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunction1).toHaveBeenCalled();
expect(mockFunction1).toHaveBeenCalledTimes(2);

expect(mockFunction1).toHaveBeenCalledWith("17");
expect(mockFunction1).toHaveBeenCalledWith("42")

});

simpleMocks.test.ts

You can customize your mock in many ways
test("customizing mock functions", () => {

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(mockFunction2(3)).toBe(6);
expect(mockFunction2(14)).toBe(28)
expect(mockFunction2).toHaveBeenCalledWith(3);
expect(mockFunction2).toHaveBeenCalledWith(14);

// you can also reset the mock's history
mockFunction2.mockReset()
expect(mockFunction2).not.toHaveBeenCalledWith(14);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

simpleMocks.test.ts

https://jestjs.io/docs/mock-function-api

Let’s mock the http client from the async
module
import axios from 'axios'

export async function echo(str: string) : Promise<string> {
const res =

await axios.get(`https://httpbin.org/get?answer=${str}`)
return res.data.args.answer

}

echo.ts

Pattern: use .spyon to spy on a single
method
import axios from 'axios'
import { echo } from './echo'

describe("tests for echo", () => {

beforeEach(jest.resetAllMocks)

test('just spying on a function runs the original', async () => {
jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')
const str = '43'
const correctURL = `https://httpbin.org/get?answer=${str}`
await expect(echo(str)).resolves.toEqual(str);
expect(spy1).toBeCalledWith(correctURL);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts

import axios from 'axios'
import { echo } from './echo'

describe("tests for echo", () => {

beforeEach(jest.resetAllMocks)

test('just spying on a function runs the original', async () => {
jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')
const str = '43'
const correctURL = `https://httpbin.org/get?answer=${str}`
await expect(echo(str)).resolves.toEqual(str);
expect(spy1).toBeCalledWith(correctURL);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

Spying on a function runs the original
echo.test.ts

Pattern: add a mock response to turn a spy
into a mock
test('mocking the http call doesn\'t actually do a live call', async () => {

jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')

// have the mock return this
const mockAnswer = '777'
const mockResponse = { data: { args: { answer: mockAnswer } } }
spy1.mockResolvedValue(mockResponse) // don't run the original!

const realInput = '43' // put this in the URL
const realQuery = `https://httpbin.org/get?answer=${realInput}`

// 'echo' takes the realInput, but returns the mockAnswer,
// so the http call must not have taken place
await expect(echo(realInput)).resolves.toEqual(mockAnswer);
expect(spy1).toBeCalledWith(realQuery);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts

This pattern creates close coupling between
the SUT and the test
test('mocking the http call doesn\'t actually do a live call', async () => {

jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')

// have the mock return this
const mockAnswer = '777'
const mockResponse = { data: { args: { answer: mockAnswer } } }
spy1.mockResolvedValue(mockResponse) // don't run the original!

const realInput = '43' // put this in the URL
const realQuery = `https://httpbin.org/get?answer=${realInput}`

// 'echo' takes the realInput, but returns the mockAnswer,
// so the http call must not have taken place
await expect(echo(realInput)).resolves.toEqual(mockAnswer);
expect(spy1).toBeCalledWith(realQuery);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts

Pattern: spy on one method of a class to
replace it with a mock.

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.player.id);

});

Learning Objectives for this Lesson
• You should now be prepared to:

• Explain why you might need a test double in your testing
• Use simple mocks and spies in your tests.

25

	CS 4530: Fundamentals of Software Engineering��Module 12.1: Testing Effectful Code
	Learning Objectives for this Lesson
	Remember:�Assemble/Act/Assess
	If the response is an answer, testing is (more or less) straightforward
	If you can look at the state of the object, it’s still easy (1)
	If you can look at the state of the object, it’s still easy (2)
	But what if you can’t look at its state?
	If your code uses the observer pattern, you could supply your own observer
	Here is an observer you could use for testing.
	Now we can test using the custom observer
	But what if you can’t do that?
	Your module may interact with uncontrollable things in the environment
	Test doubles replace uncontrollable things with things that you do control
	Test Doubles Intercept Calls to Methods
	A spy is a test double that monitors a real object call
	A mock is like a spy, but does not actually do the call
	Simplest mock behavior in Jest
	You can customize your mock in many ways
	Let’s mock the http client from the async module
	Pattern: use .spyon to spy on a single method
	Spying on a function runs the original
	Pattern: add a mock response to turn a spy into a mock
	This pattern creates close coupling between the SUT and the test
	Pattern: spy on one method of a class to replace it with a mock.
	Learning Objectives for this Lesson

