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Learning Objectives for this Lesson
• By the end of this lesson, you should be prepared to:

• Explain why you might need a test double in your testing
• Use simple mocks and spies in your tests.
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Remember:
Assemble/Act/Assess
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test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1]) 
});

Assemble (and check that 
you’ve assembled it 
correctly)
Act (do the action that 
you are trying to test)

Assess: check to see that 
the response is correct



If the response is an answer, testing 
is (more or less) straightforward
// System Under Test

/** given a temperature in Farenheit, returns the corresponding temperature in
* Celsius

*/
function f2c(temperature:number): number { 

return (5/9*(temperature-32));
}

// Tests

describe ("tests for f2c", () => {
test("32 F => 0 C", () => {

expect(f2c(32)).toBe(0)
})
test("212 F => 100 C", () => {

expect(f2c(212)).toBe(100)
})

})

f2c.test.ts



If you can look at the state of the object, it’s 
still easy (1)
interface IPullingClock {

reset():void /** sets the time to 0 */
tick():void      /** increments the time */
getTime():number /** returns the current time */

}

class Clock1 implements IPullingClock { .... }

const c = new Clock1

clock1.test.ts



If you can look at the state of the object, it’s 
still easy (2)

describe("tests of Clock1", () => { 
test("after reset, clock should return 0", 
() => { 

c.reset();expect(c.getTime()).toBe(0)
})

test("after one tick, getTime should return 1", () => {
c.reset(); c.tick()
expect(c.getTime()).toBe(1)

})

test("after two ticks, getTime should return 2", () => {
c.reset(); c.tick();c.tick()
expect(c.getTime()).toBe(2)

})
})

clock1.test.ts



But what if you can’t look at its state?
• The action must have some visible effect on some 

other part of the system
• Look at the other part of the system
• Hopefully you can get access to the other part of 

the system.



If your code uses the observer pattern, you 
could supply your own observer
export interface IClockWithListeners { 

reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time 
addListener(listener:IClockListener):void

}

export interface IClockListener {
// @param t - the current time, as reported by the clock
notify(t:number):void

}

export class ProducerClock implements IClockWithListeners {
// some implementation

}

clockWithObserverPattern.test.ts



Here is an observer you could use for 
testing.
import { IClockWithListeners, IClockListener } from "./clockWithObserverPattern";

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

clockWithObserverPattern.test.ts



Now we can test using the custom observer
import { ProducerClock } from  "./clockWithObserverPattern";

const clock1 = new ProducerClock
const listener1 = new ClockListenerforTest(clock1)

describe("tests for ProducerClock", () => {
test("after reset, listener should return 0", () => { 

clock1.reset()
expect(listener1.getTime()).toBe(0)

})
test("after one tick, listener should return 1", () => {

clock1.reset(); clock1.tick()
expect(listener1.getTime()).toBe(1)

})
test("after two ticks, listener should return 2", () => {

clock1.reset(); clock1.tick(); clock1.tick()
expect(listener1.getTime()).toBe(2)

})
})

clockWithObserverPattern.test.ts



But what if you can’t do that?
• Existing code may have effects on other portions of 

the system, which you don’t control.



Mo

Your module may interact with 
uncontrollable things in the environment
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Mo

Test doubles replace uncontrollable 
things with things that you do control 
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Test Doubles Intercept Calls to Methods
• Testing frameworks provide two common abstractions for doubles

• The framework transparently modifies programs while running to 
intercept calls

• Spies invoke the original method, but record the parameters and call 
information

• Mocks do not invoke the original method
• Default is to provide canned responses (Jest picks: undefined)
• Also can provide a mock implementation to entirely replace the 

original method
• Other frameworks use terms like "fake" and "stub" for variants of these; 

we focus on Jest’s features (spies, mocks)
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A spy is a test double that monitors a real 
object call
• It  remembers how the method was called, and 

what was returned;
• For example: a particular method was called

1. First with parameters "foo" and 42, and it returned 63
2. Then with parameters "quux" and -88, and it returned "hark!"

• A spy can be useful in conjunction with the "real"
environment:
• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?
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A mock is like a spy, but does not actually 
do the call
• It  remembers how the method was called, and 

what was returned;
• For example: a particular method was called

1. First with parameters "foo" and 42, and it returned 63
2. Then with parameters "quux" and -88, and it returned "hark!"

• You can set up the mock to return what you want
• Jest default is to return undefined
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Simplest mock behavior in Jest
test("simplest mock behavior", () => {

const mockFunction1 = jest.fn();

const result1 = mockFunction1("17");
const result2 = mockFunction1("42")

expect(result1).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunction1).toHaveBeenCalled();
expect(mockFunction1).toHaveBeenCalledTimes(2);

expect(mockFunction1).toHaveBeenCalledWith("17");
expect(mockFunction1).toHaveBeenCalledWith("42")

});

simpleMocks.test.ts



You can customize your mock in many ways
test("customizing mock functions", () => {

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation 
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(mockFunction2(3)).toBe(6);
expect(mockFunction2(14)).toBe(28)
expect(mockFunction2).toHaveBeenCalledWith(3);
expect(mockFunction2).toHaveBeenCalledWith(14);

// you can also reset the mock's history
mockFunction2.mockReset()
expect(mockFunction2).not.toHaveBeenCalledWith(14);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

simpleMocks.test.ts

https://jestjs.io/docs/mock-function-api


Let’s mock the http client from the async 
module
import axios from 'axios'

export async function echo(str: string) : Promise<string> {
const res = 

await axios.get(`https://httpbin.org/get?answer=${str}`)
return res.data.args.answer

}

echo.ts



Pattern: use .spyon to spy on a single 
method
import axios from 'axios'
import { echo } from './echo'

describe("tests for echo", () => {

beforeEach(jest.resetAllMocks)

test('just spying on a function runs the original', async () => {
jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')
const str = '43'
const correctURL = `https://httpbin.org/get?answer=${str}`
await expect(echo(str)).resolves.toEqual(str);
expect(spy1).toBeCalledWith(correctURL);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts



import axios from 'axios'
import { echo } from './echo'

describe("tests for echo", () => {

beforeEach(jest.resetAllMocks)

test('just spying on a function runs the original', async () => {
jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')
const str = '43'
const correctURL = `https://httpbin.org/get?answer=${str}`
await expect(echo(str)).resolves.toEqual(str);
expect(spy1).toBeCalledWith(correctURL);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

Spying on a function runs the original
echo.test.ts



Pattern: add a mock response to turn a spy 
into a mock
test('mocking the http call doesn\'t actually do a live call', async () => {

jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')

// have the mock return this
const mockAnswer = '777'
const mockResponse = { data: { args: { answer: mockAnswer } } }
spy1.mockResolvedValue(mockResponse) // don't run the original! 

const realInput = '43' // put this in the URL
const realQuery = `https://httpbin.org/get?answer=${realInput}`

// 'echo' takes the realInput, but returns the mockAnswer,
// so the http call must not have taken place
await expect(echo(realInput)).resolves.toEqual(mockAnswer);
expect(spy1).toBeCalledWith(realQuery);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts



This pattern creates close coupling between 
the SUT and the test
test('mocking the http call doesn\'t actually do a live call', async () => {

jest.resetAllMocks()
const spy1 = jest.spyOn(axios, 'get')

// have the mock return this
const mockAnswer = '777'
const mockResponse = { data: { args: { answer: mockAnswer } } }
spy1.mockResolvedValue(mockResponse) // don't run the original! 

const realInput = '43' // put this in the URL
const realQuery = `https://httpbin.org/get?answer=${realInput}`

// 'echo' takes the realInput, but returns the mockAnswer,
// so the http call must not have taken place
await expect(echo(realInput)).resolves.toEqual(mockAnswer);
expect(spy1).toBeCalledWith(realQuery);
expect(spy1).toBeCalledTimes(1)
expect.assertions(3)

})

echo.test.ts



Pattern: spy on one method of a class to 
replace it with a mock.

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.player.id);

});



Learning Objectives for this Lesson
• You should now be prepared to:

• Explain why you might need a test double in your testing
• Use simple mocks and spies in your tests.
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